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The reachability sets of Vector Addition Systems of dimension six or more can
be non-semilinear. This may be one reason why the inclusion problem (as well as
the equality problem) for reachability sets of vector addition systems in general is
undecidable, even though the reachability problem itself is known to be decidable. We
show that any one-dimensional projection of the reachability set of an arbitrary vector

addition system is semilinear, and hence “simple”,
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1 Introduction

Veetor Addition Systems {VAS), and Petri nets, their equivalent graphical representation,
are well-known models for the representation of aspects of parallel control, like liveness, or
absence of deadlock. A central problem in their study 1s the description of the set of all
states reachable in a given vector addition system, the so-called reachability set. In [7], it
was shown that the membership problem for VAS reachability sets is decidable. For VAS's
of dimension at most five, [4] establishes that their reachability sets are in fact semilinear,
and gives an effective method for their construction. For dimensions above five, [4] also
exhibits examples of VAS’s with non-semilinear reachability sets.

The inherent complexity of VAS reachability sets is further underlined by the fact that
the containment problem as well as the equality problem for VAS reachability sets are
undecidable [1. 3]. and by the exponential space lower bound kncwn for the reachability
problem [6. 8]. In particular. small “Petri net computers™ can be built to simnulate Turing
mwachine computations using exponential space.

Often. we are interested in the values attainable for a certain component of a VAS. We
will prove as the main result of this paper, that the projection of a VAS reachability set
onto a single coordinate 1s always semilinear, and hence has a (relatively ) simple structure.
Of course, our result follows trivially if we restrict ourselves to VAS’s with components of
absolute value at most one. The problem is non-trivial, however, in the general case. A
constructive proof of our result would, in fact, provide another proof of the decidability
of the reachability problem since the latter is known to be recursively equivalent to the
problem of deciding whether zero is reachable in a specified component [3].

A variant of Petri nets allows inhibitor arcs which make the firability of a transition
dependent upon the condition that a place contain no tokens. It is well-known that the
reachability problem for Petri nets with inhibitor arcs is undecidable [3]. We give an
example of such nets for which certain components no longer have semilinear projections.

The remainder of this paper is organized as follows: in section 2, we give basic
definitions and state the main result of the paper. Section 3 first states a number-theoretic
Lemma which is essential for the subsequent proof of our result, and we conclude in section
4 outlining some possible extensions and open problems.

2 Basic Definitions and Main Result

We first introduce sowie hasic concepts and notation. A vector addition system or VAS
is a pair (z,V). The vector x € N" is called the initial or starting vector, the integer
n is the dimension of the VAS, and V C Z" is a finite set of transition vectors. The
reachability set of a VAS (z,V) is the smallest set R(z,V') satisfying the following two
properties: (i) £ € Li«,V'), aud (i) wheweva < € B{x,V), v € V, and 2z +v € N”
then z + v € R(z,V); ie, R(z,V) is closed under addition of transition vectors as
long as the sum has only nonnegative components. We also say that z € R(z,V) is
reachable in (z, V). A transition sequence (”M)lsist of transition vectors v is applicable




to some vector y € N"af y + 370, vV e N foralli=1...., t. In this case, the vector
- =y~ Y _, vV is called reachable from y in (r.17). To denote this, we also use y —y =
Thus. R(.r‘.") ={z r o>y 2}

For r € Z™. we use r; to denote the i-th component of the vector r. and we let R;{z. 1)
stand for the projection {z;; = € R(z,1V")} of the reachability set R(z,1") onto the :-th
~omponent. The linear ordering < of the integers is extended, in the canounical way, to the
partinl ordering < of Z", ie.. for v,y € Z". we have r <y iff r; <y for 1 <1 < n. and
>« yubr <yand r and y are different.

A lnear subset L of N is a set of the form

¢
L={b+> nd:n;eNfori=1...., t}
=1
for some vectors b b o b € N" (often, b is called the base of L, and the b its

nertods ). A semilinear set is a finite union of linear sets.

Semiiinear sets have many desirable properties. It turns out that they are exactly
the weots describable within the first order logic of the natural numbers with addition,
also known as Presburger Arithmetic [9]. Our main result states that projections of VAS
reachability sets also fall into this class.

Theorem 1 Let (r, V') be an arbitrary VAS of dimension n, and i € {1,....n}. Then the
projection R(x. V') of the reachability set R(x, V') 1s semilinear.

We shall give a proof of this Theorem in the next section.

3 Proof of Main Theorem

We first state a couple of lemmata which are essential later on in the proof of our main
result.

Lemma 3.1 Let S be a subset of N such that there are ng,t > 0 with the property that
s€S, s>ng = s+tes.

Then the set S 13 semilinear.

Proof: Defllie. for1 =0,....t - 1,

S;:={s €S, s2ny s=1modt},

aned set

S;:i={s€S; s <ng}.

o




Clearly. S = S; UU'Z)S:. Also, each S; is linear. For suppose that S; # @, and let
m; = min{s; s € 5;}. Then m,; > ng. and by the condition of the Lemma, m, + kt € S,
for all & > 0. Since s € S, in fact implies s = m; mod t we obtain

S, = {m; + kt: k> 0},

which ix clearly linear.
Since Sy is finite. and since semilinear sets are closed under (finite) union, S is
semilinear. [J

Lemma 3.2 Lel be an infinite sequence of vectors from N™. Then o contains an infinite,
(with respect to <) nondecreasing subsequence.

This Lemma sometimes is referred to as Dickson’s Lemma [2]. We omit a proof which
can easily be obtained by induction on the dimension n.

Next, we describe an algorithm to construct, for a given VAS (z,V), its reachability tree
T(x.V"). This reachability tree is a directed graph (not quite, but almost, a tree) whose
edges are labelled with transitions v € V, and whose nodes are labelled with so-called
pseudo-vectors which we shall describe below. Qur construction is similar to constructions
given in [5. 7). with some teclnical adaptations.

Pseudo-vectors of an n-dimensional VAS are vectors in (N U {w})", 1.e., n-dimensional
vectors whose components are either nonnegative integers or the special element w. The
intuitive meaning for w is that it stands for a value that can become arbitrarily large.
Formally, it satisfies the following rules:

w+m=m+w=w, forall m € Z.

Applicability of (finite) transition sequences to pseudo-vectors, and reachability of one
pseudo-vector from another are defined as for vectors.

algorithm 7(x. V');
co given a VAS (z,V), this algorithm constructs its reachability tree T = T'(z,V) oc

begin
let T initially consist of node r, with label {(r) = z;
mark r as active;
while T contains some active node p (with label {(p)) do
for every v € V
(i) which is applicable to {(p), and
(ii) for which there is no edge labelled v out of p yet
do
add to T a new, active node ¢, with label l(q) = l(p) + v;
add to T the arc (p,q), with label v;
if there is a node ¢’ with [(¢’) = l(¢) on the simple path from r to p
co a path is simple if it contains no cycle oc




then
replace the arc (p.q) by (p.¢’) with label v, and delete ¢ from T
elsf therec is a node ¢” on the simple path from r to p such that
(i} Il(q) and I(¢") have the same set of w-coordinates,
(i) 1(¢") < lq)
co if there are several such ¢” one is picked at random oc
then
co we call ¢ an w-node oc
add to T a cycle, starting and ending in ¢, with the same edge sequence and edge
labels as the path from ¢” to g;
label the nodes on this cycle, including ¢, the same as the corresponding nodes on the
path from ¢’ to q, except that all coordinates ¢ where ({(¢"”))i < (I(g)); become w;
mark all nodes on the cycle as active
co we call this cycle the w-cycle of ¢ oc
fi
od:
mark p as inactive
od
end algorithm T.

As indicated in the specification of the algorithm, we shall refer to nodes where new
«-coordinates are introduced as w-nodes, and we call the cycle attached to such a node
when it is created its w-cycle.

Theorem 2 Algorithm T terminates.

Proof: Applying Konig’s Lemma, it suffices to show that there cannot be an infinite
simple path starting from the root r. Since, whenever node ¢ is reachable from node p in
T. label {(q) contains at least the w-coordinates present in I(p}, and since the dimension
n of the VAS is finite, it even suffices to show that there can be no infinite simple path
with all nodes having the same set of w-coordinates. The last claim follows immediately
from Lemma 2, applied to the projection of the labels onto the non-w-coordinates, and the
definition of the algorithm. {J

Lemma 3.3 Suppose z = I(p) s the label of some node p in the reachability tree T(z, V).
Let (U(i))lsist be a transition sequence applicable to z. Then there is a unique path in
T(x,V) starting from p whose edge label sequence s (vm)lsiSf'

Proof: The proof is immediate from the statement of the algorithm, by induction on the
length ¢ of the transition sequence. [J

Lemma 3.4 Let p be some w-node in the reachability tree T(z, V), and let (v{);<i<. be
the sequence of edge labels along its w-cycle, starting at p. Then, for 6§ = 3%, vl we
have




(1) & > 0 for all coordinates ¢ which become new w-coordinates at p;
(i) ¢, = Q for all finate (i.e.. non-w} coordinates of l(p).

For coordinates 1 which are already equal to w at earlier nodes on the (simple) path from
the root r to p. &, can be arbitrary.

Proof: Again. the claim of the Lemma follows immediately from the statement of the
algorithm. [J

As we have seen above, every vector sequence applicable to the initial vector r
corresponds to a unique poth in T(x. V), starting at the root. Conversely, it is clear
thiat not every such path corresponds to an applicable vector sequence, due to the effect of
~-coordinates. However. we are still able to infer the existence of certain applicable vector
sequences from the structure of the reachability tree T(x, V).

More precisely. let p be some w-node in T(x, V), let ptM_ ... p® be the other w-nodes
on the simple path from r to p, in order, and let 4 and 7(;) be the sequences of the edge
labels around the w-cveles through p and p®), respectively. Also, let agy, forv=1,... k.
=1 (r for ; = 1) and p!*) along any path from
the root to p, and let & be defined similarly between p*) and p. For any vector sequence
3 and 3'. we shall use 6(;3) to denote the sum of all the vectors in 3, 88’ to denote the
concatenation of 7 and 3. and 3* to denote the k-fold iteration of 3.

be the sequence of edge labels between pf

Lemma 3.3 Let notation be as above. Then there are integers ni,...,n, > 0. and
by be > 0 such that. for every t > 0, the vector sequence B) defined as

- b g+
}f))(t) — a(l),.,(tlf;1+ la(2) o Of(k)")’(tk)k+ ka,yt

s applicable to the initial vector x, and

k
(> n;-6(vyy) +6(7)): >0

j=1

for all w-coordinates of l(p).

Proof: The proof is by induction on k.
= 0: The claim follows since there are no w-coordinates in labels of nodes above p in
the tree, and because of Lemma 4.

k > 0: Suppose the Lemma is true for all values up to k — 1, and let n},... ,ny_; and
bi.....b_, be numbers as claimed by the Lemma. Let

ny+bi tng_ +h_

(1) t:
B = aayryy e age Vel R Yk

Also, let I' be the set of w-coordinates of I(p(*)), and I the set of coordinates which become
new w-coordinates at p. Note that the i:-th coordinate of f;l' n%-6(v(;)) +6(v(x)) is greater

(3]

L)




than vers for ol coordinates i I'L by the second part of the induction hypoihesis, and
canit o cero for all other coordinates, because of Lomma 4. Hence, there are minimal ¢/
and o el thar civ the veetor sequence an 1s applicable to o 4+ S(3N. and (11) the 7-th
component of o’ (3] n' sl ety )) + &%) s positive for all ¢ € I'. Note that

p=

i commponents in I of this last sum are automatically greater than zero. We claim that
hy=tnl+hfore=1..... A=l by =t . ny=n"-nlfori=1..... k—1.and n, = n’ satisfy
‘hie Lemuna, Sinee the second part of the Lemma is true by coustruction we only have to
o that 3'7 is applicable to the initial vector » for all . For ¢ < 1 this is immediate
from the construction, and for £ > 1 we note that

t—-1)n' +t")

7+ (g‘())!((h +t )()7?—]) Z r 4+ (\(7)’(( a:'t—'l)

.

and slnee = is applicable to the latter. so it is to the former. But this means in fact that
At s applicable to ¢, concluding our proof. [J

Lemma 3.6 Let « be any vector sequence applicable to x such that the path corresponding
to o an Tie. V) containz an «-node where the i-th coordinate becomes «. Then there is
somee t > 0 such that R(xr. V") contains (r + 8(a)); + kt, for all k > 0.

Proof: Decompose a into a’a” where a’ is the prefix of a of maximal length ending
at the w-node where coordinate 1 becomes an w-coordinate. Then the claim follows from
Lemmia 5 and Lemma 4. [

We are now able to finish the proof of Theorem 1. We partition the vector sequences
applicable to the initial vector & into classes C, and Cy: the class C,, with p an w-node in
Tir. V' where the i-th coordinate becomes w, is to contain all applicable vector sequences
whose corresponding path in T(r, V) contains p. and Cjy all remaining vector sequences.
Clearly. by rhe finiteness of the reachability tree, the set S = {(z + 6(a));; a € Cp} is
finite. Also. by Lemuma 1 and Lemma 6. each of the sets S, = {(z + é(a))i; a € C,} is
semilinear. and hence so 1s the union of the S, and Sp. Since this union is equal to Ri(z, V')
the prootf of Theorem 1 1s complete.

As an immediate consequence of Theorem 1 we also obtain that the set of all integers
which are equal to the sum of the components of a vector in the reachability set is

<emlinear.

Corollary Let (r.V7) be an arbitrary VAS of dimension n. Then the set
Re(x V)= {D (y)sy € R(z.V)}
1=1

18 aemtlinear.

Proof: Modify the given vector addition system (z, V) by introducing the sum of the
components of a vector as an additional component. An application of Theorem 1 on the
resnlting vector addition system (z'. V') defined by

= () (x), 2. Tn)

1=1




and

T

V=Y )iy € V)

=1

gives us the semilinearity of Ry’ V") = Roe(2'. V7). [

4 Conclusion

In the terminology of Petri nets Theorem 1 means that the set of possible numbers of
tokens for a certain place of a Petri net starting with some initial marking is semilinear.
(For definitions see [3. 3].)

Allowing inhibitor arcs leads to a variant of Petri nets with undecidable reachability
problem [3}. In contrast to ordinary Petri nets there are examples of these nets with

non-scmilinear projections for certain components.

Erample: Petri nets with inhibitor arcs can be used to simulate programs via simulation
of register machine computations, and certain projections of the reachability set starting
with a certain initial raarking correspond to the set of all values of a variable taken during
the run of the program.

In the following program the variable d takes all values in the non-semilinear set

A={deN:d>2,3c>1:d=c+length(c)},
where length(c) = [log,(c 4+ 1)] is the length of the binary representation of ¢:
d .
rol=

while true do
ez 0+ 1t

I

-

Obviously a certain projection of the reachability set of the simulating Petri net will
be the non-semilinear set A.

The above net. however, will contain several inhibitor arcs. In case of only one inhibitor
arc it is still open. whether there exists a net and a place in it with a non-semilinear set of
markings. Finally. it should also be mentioned that the reachability problem for nets with

only one inhibitor are is still open.
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